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INTRODUCTION

When the studies report means and standard deviations, the preferred effect size is

usually the raw mean difference, the standardized mean difference, or the response

ratio. These effect sizes are discussed in this chapter.

RAW (UNSTANDARDIZED) MEAN DIFFERENCE D

When the outcome is reported on a meaningful scale and all studies in the analysis use

the same scale, the meta-analysis can be performed directly on the raw difference in

means (henceforth, we will use the more common term, raw mean difference). The

primary advantage of the raw mean difference is that it is intuitively meaningful,

either inherently (for example, blood pressure, which is measured on a known scale)

or because of widespread use (for example, a national achievement test for students,

where all relevant parties are familiar with the scale).

Consider a study that reports means for two groups (Treated and Control) and

suppose we wish to compare the means of these two groups. Let �1 and �2 be the true

(population) means of the two groups. The population mean difference is defined as

D ¼ �1 � �2: ð4:1Þ

In the two sections that follow we show how to compute an estimate D of this

parameter and its variance from studies that used two independent groups and from

studies that used paired groups or matched designs.
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Computing D from studies that use independent groups

We can estimate the mean difference D from a study that used two independent

groups as follows. Let X1 and X2 be the sample means of the two independent

groups. The sample estimate of D is just the difference in sample means, namely

D ¼ X1 � X2: ð4:2Þ

Note that uppercase D is used for the raw mean difference, whereas lowercase d will

be used for the standardized mean difference (below).

Let S1 and S2 be the sample standard deviations of the two groups, and n1 and n2

be the sample sizes in the two groups. If we assume that the two population standard

deviations are the same (as is assumed to be the case in most parametric data

analysis techniques), so that �1 5�2 5 �, then the variance of D is

VD 5
n1 þ n2

n1n2

S2
pooled; ð4:3Þ

where

Spooled 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1ÞS2

1 þ ðn2 � 1ÞS2
2

n1 þ n2 � 2

s
: ð4:4Þ

If we don’t assume that the two population standard deviations are the same, then

the variance of D is

VD 5
S2

1

n1

þ S2
2

n2

: ð4:5Þ

In either case, the standard error of D is then the square root of V,

SED 5
ffiffiffiffiffiffi
VD

p
: ð4:6Þ

For example, suppose that a study has sample means X15 103.00, X2 5 100.00,

sample standard deviations S1 5 5.5, S2 5 4.5, and sample sizes n1 5 n2 5 50. The

raw mean difference D is

D 5 103:00� 100:00 5 3:00:

If we assume that �1 5�2 then the pooled standard deviation within groups is

Spooled 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50� 1ð Þ � 5:52 þ 50� 1ð Þ � 4:52

50þ 50� 2

s
5 5:0249:

The variance and standard error of D are given by

VD 5
50þ 50

50� 50
� 5:02492 5 1:0100;

and
SED 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0100
p

5 1:0050:
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If we do not assume that �15 �2 then the variance and standard error of D are

given by

VD 5
5:52

50
þ 4:52

50
5 1:0100

and

SED 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0100
p

5 1:0050:

In this example formulas (4.3) and (4.5) yield the same result, but this will be true

only if the sample size and/or the estimate of the variances is the same in the two

groups.

Computing D from studies that use matched groups or pre-post scores

The previous formulas are appropriate for studies that use two independent groups.

Another study design is the use of matched groups, where pairs of participants are

matched in some way (for example, siblings, or patients at the same stage of

disease), with the two members of each pair then being assigned to different groups.

The unit of analysis is the pair, and the advantage of this design is that each pair

serves as its own control, reducing the error term and increasing the statistical

power. The magnitude of the impact depends on the correlation between (for

example) siblings, with a higher correlation yielding a lower variance (and

increased precision).

The sample estimate of D is just the sample mean difference, D. If we have the

difference score for each pair, which gives us the mean difference Xdiff and the

standard deviation of these differences (Sdiff), then

D 5 Xdiff ; ð4:7Þ

VD 5
S2

diff

n
; ð4:8Þ

where n is the number of pairs, and

SED 5
ffiffiffiffiffiffi
VD

p
: ð4:9Þ

For example, if the mean difference is 5.00 with standard deviation of the difference

of 10.00 and n of 50 pairs, then

D 5 5:0000;

VD 5
10:002

50
5 2:0000; ð4:10Þ

and

SED 5
ffiffiffiffiffiffiffiffiffi
2:00
p

5 1:4142: ð4:11Þ
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Alternatively, if we have the mean and standard deviation for each set of scores (for

example, siblings A and B), the difference is

D ¼ X1 � X2: ð4:12Þ

The variance is again given by

VD 5
S2

diff

n
; ð4:13Þ

where n is the number of pairs, and the standard error is given by

SED 5
ffiffiffiffiffiffi
VD

p
: ð4:14Þ

However, in this case we need to compute the standard deviation of the difference

scores from the standard deviation of each sibling’s scores. This is given by

Sdiff 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1 þ S2
2 � 2� r � S1 � S2

q
ð4:15Þ

where r is the correlation between ‘siblings’ in matched pairs. If S1 5 S2, then (4.15)

simplifies to

Sdiff 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� S2

pooledð1� rÞ
q

: ð4:16Þ

In either case, as r moves toward 1.0 the standard error of the paired difference will

decrease, and when r 5 0 the standard error of the difference is the same as it would

be for a study with two independent groups, each of size n.

For example, suppose the means for siblings A and B are 105.00 and 100.00, with

standard deviations 10 and 10, the correlation between the two sets of scores is 0.50,

and the number of pairs is 50. Then

D 5 105:00� 100:00 5 5:0000;

VD 5
10:002

50
5 2:0000;

and

SED 5
ffiffiffiffiffiffiffiffiffi
2:00
p

5 1:4142:

In the calculation of VD, the Sdiff is computed using

Sdiff 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102 þ 102 � 2� 0:50� 10� 10

p
5 10:0000

or

Sdiff 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 102ð1� 0:50Þ

q
5 10:0000:

The formulas for matched designs apply to pre-post designs as well. The pre and

post means correspond to the means in the matched groups, n is the number of

subjects, and r is the correlation between pre-scores and post-scores.
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Calculation of effect size estimates from information that is reported

When a researcher has access to a full set of summary data such as the mean,

standard deviation, and sample size for each group, the computation of the effect

size and its variance is relatively straightforward. In practice, however, the

researcher will often be working with only partial data. For example, a paper may

publish only the p-value, means and sample sizes from a test of significance, leaving

it to the meta-analyst to back-compute the effect size and variance. For information

on computing effect sizes from partial information, see Borenstein et al. (2009).

Including different study designs in the same analysis

Sometimes a systematic review will include studies that used independent groups

and also studies that used matched groups. From a statistical perspective the effect

size (D) has the same meaning regardless of the study design. Therefore, we can

compute the effect size and variance from each study using the appropriate formula,

and then include all studies in the same analysis. While there is no technical barrier

to using different study designs in the same analysis, there may be a concern

that studies which used different designs might differ in substantive ways as well

(see Chapter 40).

For all study designs (whether using independent or paired groups) the direction

of the effect (X1 � X2 or X2 � X1) is arbitrary, except that the researcher must

decide on a convention and then apply this consistently. For example, if a positive

difference will indicate that the treated group did better than the control group, then

this convention must apply for studies that used independent designs and for studies

that used pre-post designs. In some cases it might be necessary to reverse the

computed sign of the effect size to ensure that the convention is followed.

STANDARDIZED MEAN DIFFERENCE, d AND g

As noted, the raw mean difference is a useful index when the measure is mean-

ingful, either inherently or because of widespread use. By contrast, when the

measure is less well known (for example, a proprietary scale with limited distribu-

tion), the use of a raw mean difference has less to recommend it. In any event, the

raw mean difference is an option only if all the studies in the meta-analysis use the

same scale. If different studies use different instruments (such as different psycho-

logical or educational tests) to assess the outcome, then the scale of measurement

will differ from study to study and it would not be meaningful to combine raw mean

differences.

In such cases we can divide the mean difference in each study by that study’s

standard deviation to create an index (the standardized mean difference) that would be

comparable across studies. This is the same approach suggested by Cohen (1969, 1987)

in connection with describing the magnitude of effects in statistical power analysis.
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The standardized mean difference can be considered as being comparable across

studies based on either of two arguments (Hedges and Olkin, 1985). If the outcome

measures in all studies are linear transformations of each other, the standardized mean

difference can be seen as the mean difference that would have been obtained if all data

were transformed to a scale where the standard deviation within-groups was equal to 1.0.

The other argument for comparability of standardized mean differences is the fact

that the standardized mean difference is a measure of overlap between distributions.

In this telling, the standardized mean difference reflects the difference between the

distributions in the two groups (and how each represents a distinct cluster of scores)

even if they do not measure exactly the same outcome (see Cohen, 1987, Grissom

and Kim, 2005).

Consider a study that uses two independent groups, and suppose we wish to

compare the means of these two groups. Let �1 and �1 be the true (population) mean

and standard deviation of the first group and let �2 and �2 be the true (population)

mean and standard deviation of the other group. If the two population standard

deviations are the same (as is assumed in most parametric data analysis techniques),

so that �1 5�2 5�, then the standardized mean difference parameter or population

standardized mean difference is defined as

�5
�1 � �2

�
: ð4:17Þ

In the sections that follow, we show how to estimate � from studies that used indepen-

dent groups, and from studies that used pre-post or matched group designs. It is also

possible to estimate � from studies that used other designs (including clustered designs)

but these are not addressed here (see resources at the end of this Part). We make the

common assumption that �1
2 5�2

2, which allows us to pool the estimates of the

standard deviation, and do not address the case where these are assumed to differ

from each other.

Computing d and g from studies that use independent groups

We can estimate the standardized mean difference (�) from studies that used two

independent groups as

d 5
X1 � X2

Swithin

: ð4:18Þ

In the numerator, X1 and X2 are the sample means in the two groups. In the

denominator Swithin is the within-groups standard deviation, pooled across groups,

Swithin 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1ÞS2

1 þ ðn2 � 1ÞS2
2

n1 þ n2 � 2

s
ð4:19Þ

where n1 and n2 are the sample sizes in the two groups, and S1 and S2 are the

standard deviations in the two groups. The reason that we pool the two sample
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estimates of the standard deviation is that even if we assume that the underlying

population standard deviations are the same (that is �1 5�2 5�), it is unlikely that

the sample estimates S1 and S2 will be identical. By pooling the two estimates of

the standard deviation, we obtain a more accurate estimate of their common value.

The sample estimate of the standardized mean difference is often called Cohen’s

d in research synthesis. Some confusion about the terminology has resulted from the

fact that the index �, originally proposed by Cohen as a population parameter for

describing the size of effects for statistical power analysis is also sometimes called d.

In this volume we use the symbol � to denote the effect size parameter and d for the

sample estimate of that parameter.

The variance of d is given (to a very good approximation) by

Vd 5
n1 þ n2

n1n2

þ d2

2ðn1 þ n2Þ
: ð4:20Þ

In this equation the first term on the right of the equals sign reflects uncertainty in the

estimate of the mean difference (the numerator in (4.18)), and the second reflects

uncertainty in the estimate of Swithin (the denominator in (4.18)).

The standard error of d is the square root of Vd,

SEd 5
ffiffiffiffiffi
Vd

p
: ð4:21Þ

It turns out that d has a slight bias, tending to overestimate the absolute value of � in

small samples. This bias can be removed by a simple correction that yields an

unbiased estimate of �, with the unbiased estimate sometimes called Hedges’ g

(Hedges, 1981). To convert from d to Hedges’ g we use a correction factor, which is

called J. Hedges (1981) gives the exact formula for J, but in common practice

researchers use an approximation,

J 5 1� 3

4df � 1
: ð4:22Þ

In this expression, df is the degrees of freedom used to estimate Swithin, which for

two independent groups is n1 þ n2 – 2. This approximation always has error of less

than 0.007 and less than 0.035 percent when df �10 (Hedges, 1981). Then,

g 5 J � d; ð4:23Þ

Vg 5 J2 � Vd; ð4:24Þ

and

SEg 5
ffiffiffiffiffi
Vg

p
: ð4:25Þ

For example, suppose a study has sample means X1 5 103, X2 5 100, sample

standard deviations S1 5 5.5, S2 5 4.5, and sample sizes n1 5 n2 5 50. We would

estimate the pooled-within-groups standard deviation as
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Swithin 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50� 1ð Þ � 5:52 þ 50� 1ð Þ � 4:52

50þ 50� 2

s
5 5:0249:

Then,

d 5
103� 100

5:0249
5 0:5970;

Vd 5
50þ 50

50� 50
þ 0:59702

2 50þ 50ð Þ 5 0:0418;

and

SEd 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0418
p

5 0:2044:

The correction factor (J), Hedges’ g, its variance and standard error are given by

J 5 1� 3

4� 98� 1

� �
5 0:9923;

g 5 0:9923� 0:5970 5 0:5924;

vg 5 0:99232 � 0:0418 5 0:0411;

and

SEg 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0411
p

5 0:2028:

The correction factor (J) is always less than 1.0, and so g will always be less

than d in absolute value, and the variance of g will always be less than the variance

of d. However, J will be very close to 1.0 unless df is very small (say, less

than 10) and so (as in this example) the difference is usually trivial (Hedges, 1981).

Some slightly different expressions for the variance of d (and g) have been given

by different authors and even the same authors at different times. For example, the

denominator of the second term of the variance of d is given here as 2(n1þ n2). This

expression is obtained by one method (assuming the n’s become large with � fixed).

An alternate derivation (assuming n’s become large with
ffiffiffi
n
p

� fixed) leads to a

denominator in the second term that is slightly different, namely 2(n1 þ n2 – 2).

Unless n1 and n2 are very small, these expressions will be almost identical.

Similarly, the expression given here for the variance of g is J2 times the variance

of d, but many authors ignore the J2 term because it is so close to unity in most cases.

Again, while it is preferable to include this correction factor, the inclusion of this

factor is likely to make little practical difference.

Computing d and g from studies that use pre-post scores or matched groups

We can estimate the standardized mean difference (�) from studies that used

matched groups or pre-post scores in one group. The formula for the sample

estimate of d is
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d 5
Ydiff

Swithin

5
Y1 � Y2

Swithin

: ð4:26Þ

This is the same formula as for independent groups (4.18). However, when we are

working with independent groups the natural unit of deviation is the standard

deviation within groups and so this value is typically reported (or easily imputed).

By contrast, when we are working with matched groups, the natural unit of devia-

tion is the standard deviation of the difference scores, and so this is the value that is

likely to be reported. To compute d from the standard deviation of the differences

we need to impute the standard deviation within groups, which would then serve as

the denominator in (4.26).

Concretely, when working with a matched study, the standard deviation within

groups can be imputed from the standard deviation of the difference, using

Swithin 5
Sdiffffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� rÞ
p ; ð4:27Þ

where r is the correlation between pairs of observations (e.g., the pretest-posttest

correlation). Then we can apply (4.26) to compute d. The variance of d is given by

Vd 5
1

n
þ d2

2n

� �
2 1� rð Þ; ð4:28Þ

where n is the number of pairs. The standard error of d is just the square root of Vd,

SEd 5
ffiffiffiffiffi
Vd

p
: ð4:29Þ

Since the correlation between pre- and post-scores is required to impute the standard

deviation within groups from the standard deviation of the difference, we must

assume that this correlation is known or can be estimated with high precision.

Otherwise we may estimate the correlation from related studies, and possibly

perform a sensitivity analysis using a range of plausible correlations.

To compute Hedges’ g and associated statistics we would use formulas (4.22)

through (4.25). The degrees of freedom for computing J is n – 1, where n is the

number of pairs.

For example, suppose that a study has pre-test and post-test sample means

X1 5 103, X2 5 100, sample standard deviation of the difference Sdiff 5 5.5, sample

size n 5 50, and a correlation between pre-test and post-test of r 5 0.7. The standard

deviation within groups is imputed from the standard deviation of the difference by

Swithin 5
5:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1� 0:7ð Þ
p 5 7:1005:

Then d, its variance and standard error are computed as

d 5
103� 100

7:1000
5 0:4225;
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vd 5
1

50
þ 0:42252

2� 50

� �
2 1� 0:7ð Þð Þ5 0:0131;

and
SEd 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0131
p

5 0:1143:

The correction factor J, Hedges’ g, its variance and standard error are given by

J 5 1� 3

4� 49� 1

� �
5 0:9846;

g 5 0:9846� 0:4225 5 0:4160;

Vg 5 0:98462 � 0:0131 5 0:0127;

and

SEg 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0127
p

5 0:1126:

Including different study designs in the same analysis

As we noted earlier, a single systematic review can include studies that used

independent groups and also studies that used matched groups. From a statistical

perspective the effect size (d or g) has the same meaning regardless of the study

design. Therefore, we can compute the effect size and variance from each study

using the appropriate formula, and then include all studies in the same analysis.

While there are no technical barriers to using studies with different designs in the

same analysis, there may be a concern that these studies could differ in substantive

ways as well (see Chapter 40).

For all study designs the direction of the effect (X1 � X2 or X2 � X1) is arbitrary,

except that the researcher must decide on a convention and then apply this con-

sistently. For example, if a positive difference indicates that the treated group did

better than the control group, then this convention must apply for studies that used

independent designs and for studies that used pre-post designs. It must also apply for

all outcome measures. In some cases (for example, if some studies defined outcome

as the number of correct answers while others defined outcome as the number of

mistakes) it will be necessary to reverse the computed sign of the effect size to

ensure that the convention is applied consistently.

RESPONSE RATIOS

In research domains where the outcome is measured on a physical scale (such as

length, area, or mass) and is unlikely to be zero, the ratio of the means in the two

groups might serve as the effect size index. In experimental ecology this effect size

index is called the response ratio (Hedges, Gurevitch, & Curtis, 1999). It is

important to recognize that the response ratio is only meaningful when the outcome
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is measured on a true ratio scale. The response ratio is not meaningful for studies

(such as most social science studies) that measure outcomes such as test scores,

attitude measures, or judgments, since these have no natural scale units and no

natural zero points.

For response ratios, computations are carried out on a log scale (see the discus-

sion under risk ratios, below, for an explanation). We compute the log response ratio

and the standard error of the log response ratio, and use these numbers to perform all

steps in the meta-analysis. Only then do we convert the results back into the original

metric. This is shown schematically in Figure 4.1.

The response ratio is computed as

R 5
X1

X2

ð4:30Þ

where X1 is the mean of group 1 and X2 is the mean of group 2. The log response

ratio is computed as

lnR 5 lnðRÞ5 ln
X1

X2

� �
5 ln X1

� �
� ln X2

� �
: ð4:31Þ

The variance of the log response ratio is approximately

VlnR 5 S2
pooled

1

n1 X1

� �2
þ 1

n2 X2

� �2

 !
; ð4:32Þ

where Spooled is the pooled standard deviation. The approximate standard error is

SE ln R 5
ffiffiffiffiffiffiffiffi
VlnR

p
: ð4:33Þ

Note that we do not compute a variance for the response ratio in its original metric.

Rather, we use the log response ratio and its variance in the analysis to yield

Study A Response ratio Log response ratio

Study B Response ratio Log response ratio

Study C Response ratio Log response ratio

Summary
Response ratio

Summary
Log response ratio

Figure 4.1 Response ratios are analyzed in log units.
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a summary effect, confidence limits, and so on, in log units. We then convert each of

these values back to response ratios using

R 5 expðlnRÞ; ð4:34Þ

LLR 5 expðLLlnRÞ; ð4:35Þ

and

ULR 5 expðULlnRÞ; ð4:36Þ

where LL and UL represent the lower and upper limits, respectively.

For example, suppose that a study has two independent groups with means

X1 5 61.515, X2 5 51.015, pooled within-group standard deviation 19.475, and

sample size n1 5 n2 510.

Then R, its variance and standard error are computed as

R 5
61:515

51:015
5 1:2058;

lnR 5 ln 1:2058ð Þ5 0:1871;

VlnR 5 19:4752 1

10� 61:515ð Þ2
þ 1

10� 51:015ð Þ2

 !
5 0:0246:

and

SElnR 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0246
p

5 0:1581:

SUMMARY POINTS

� The raw mean difference (D) may be used as the effect size when the outcome

scale is either inherently meaningful or well known due to widespread use.

This effect size can only be used when all studies in the analysis used

precisely the same scale.

� The standardized mean difference (d or g) transforms all effect sizes to a

common metric, and thus enables us to include different outcome measures in

the same synthesis. This effect size is often used in primary research as well as

meta-analysis, and therefore will be intuitive to many researchers.

� The response ratio (R) is often used in ecology. This effect size is only

meaningful when the outcome has a natural zero point, but when this condi-

tion holds, it provides a unique perspective on the effect size.

� It is possible to compute an effect size and variance from studies that used two

independent groups, from studies that used matched groups (or pre-post

designs) and from studies that used clustered groups. These effect sizes may

then be included in the same meta-analysis.
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